120 research outputs found

    Unexpected differences between thermal and photoinitiated cationic curing of a diglycidyl ether of bisphenol A modified with a multiarm star poly(styrene)-b-poly(ε-caprolactone) polymer

    Get PDF
    The effect of adding a multiarm star poly(styrene)-b-poly(ε-caprolactone) polymer on the cationic thermal and photoinitiated curing of diglycidyl ether of bisphenol A was studied. This star-polymer decelerated the thermal curing of diglycidyl ether of bisphenol A and modified the final structure of the epoxy matrix. The photocuring was influenced significantly by the addition of the multiarm star. When the proportion of this modifier added was 5%, much more time was necessary for complete photocuring (160 min at 40ºC). In the presence of 10% of modifier, the degree of photocuring reached was very low (0.196 at 120°C). A subsequent thermal post-curing was necessary to cure completely the system. During photocuring in presence of poly(styrene)-b-poly(ε-caprolactone), the formation of dormant species, which are reactivated when the temperature increases, takes places. The kinetics of the thermal curing and the photocuring was analyzed using an isoconversional method due to the complexity of the reactive process. Applying this method, it has been confirmed the dependence of activation energy on the degree of conversion. The fracture morphology analyzed by scanning electron microscopy exhibited a second phase originated during photocuring by the presence of the modifier

    New adipokines vaspin and omentin. Circulating levels and gene expression in adipose tissue from morbidly obese women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaspin and omentin are recently described molecules that belong to the adipokine family and seem to be related to metabolic risk factors. The objectives of this study were twofold: to evaluate vaspin and omentin circulating levels and mRNA expression in subcutaneous and visceral adipose tissues in non-diabetic morbidly obese women; and to assess the relationship of vaspin and omentin with anthropometric and metabolic parameters, and other adipo/cytokines.</p> <p>Design</p> <p>We analysed vaspin and omentin circulating levels in 71 women of European descent (40 morbidly obese [BMI ≥ 40 kg/m<sup>2</sup>] and 31 lean [BMI ≤ 25]). We assessed vaspin and omentin gene expression in paired samples of visceral and subcutaneous abdominal adipose tissue from 46 women: 40 morbidly obese and 6 lean. We determined serum vaspin and plasma omentin levels with an Enzyme-Linked Immunosorbent Assay and adipose tissue mRNA expression by real time RT-PCR.</p> <p>Results</p> <p>Serum vaspin levels in the morbidly obese were not significantly different from those in controls. They correlated inversely with levels of lipocalin 2 and interleukin 6. Vaspin mRNA expression was significantly higher in the morbidly obese, in both subcutaneous and visceral adipose tissue.</p> <p>Plasma omentin levels were significantly lower in the morbidly obese and they correlated inversely with glucidic metabolism parameters. Omentin circulating levels, then, correlated inversely with the metabolic syndrome (MS). Omentin expression in visceral adipose tissue was significantly lower in morbidly obese women than in controls.</p> <p>Conclusions</p> <p>The present study indicates that vaspin may have a compensatory role in the underlying inflammation of obesity. Decreased omentin circulating levels have a close association with MS in morbidly obese women.</p

    RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer

    Get PDF
    Background: Around 15-20% of primary breast cancers are characterized by HER2 protein overexpression and/or HER2 gene amplification. Despite the successful development of anti-HER2 drugs, intrinsic and acquired resistance represents a major hurdle. This study was performed to analyze the RANK pathway contribution in HER2-positive breast cancer and anti-HER2 therapy resistance. Methods: RANK and RANKL protein expression was assessed in samples from HER2-positive breast cancer patients resistant to anti-HER2 therapy and treatment-naive patients. RANK and RANKL gene expression was analyzed in paired samples from patients treated with neoadjuvant dual HER2-blockade (lapatinib and trastuzumab) from the SOLTI-1114 PAMELA trial. Additionally, HER2-positive breast cancer cell lines were used to modulate RANK expression and analyze in vitro the contribution of RANK signaling to anti-HER2 resistance and downstream signaling. Results: RANK and RANKL proteins are more frequently detected in HER2-positive tumors that have acquired resistance to anti-HER2 therapies than in treatment-naive ones. RANK (but not RANKL) gene expression increased after dual anti-HER2 neoadjuvant therapy in the cohort from the SOLTI-1114 PAMELA trial. Results in HER2-positive breast cancer cell lines recapitulate the clinical observations, with increased RANK expression observed after short-term treatment with the HER2 inhibitor lapatinib or dual anti-HER2 therapy and in lapatinib-resistant cells. After RANKL stimulation, lapatinib-resistant cells show increased NF-κB activation compared to their sensitive counterparts, confirming the enhanced functionality of the RANK pathway in anti-HER2-resistant breast cancer. Overactivation of the RANK signaling pathway enhances ERK and NF-κB signaling and increases lapatinib resistance in different HER2-positive breast cancer cell lines, whereas RANK loss sensitizes lapatinib-resistant cells to the drug. Our results indicate that ErbB signaling is required for RANK/RANKL-driven activation of ERK in several HER2-positive cell lines. In contrast, lapatinib is not able to counteract the NF-κB activation elicited after RANKL treatment in RANK-overexpressing cells. Finally, we show that RANK binds to HER2 in breast cancer cells and that enhanced RANK pathway activation alters HER2 phosphorylation status. Conclusions: Our data support a physical and functional link between RANK and HER2 signaling in breast cancer and demonstrate that increased RANK signaling may contribute to the development of lapatinib resistance through NF-κB activation. Whether HER2-positive breast cancer patients with tumoral RANK expression might benefit from dual HER2 and RANK inhibition therapy remains to be elucidated

    Identification of a Mutation Associated with Fatal Foal Immunodeficiency Syndrome in the Fell and Dales Pony

    Get PDF
    The Fell and Dales are rare native UK pony breeds at risk due to falling numbers, in-breeding, and inherited disease. Specifically, the lethal Mendelian recessive disease Foal Immunodeficiency Syndrome (FIS), which manifests as B-lymphocyte immunodeficiency and progressive anemia, is a substantial threat. A significant percentage (∼10%) of the Fell ponies born each year dies from FIS, compromising the long-term survival of this breed. Moreover, the likely spread of FIS into other breeds is of major concern. Indeed, FIS was identified in the Dales pony, a related breed, during the course of this work. Using a stepwise approach comprising linkage and homozygosity mapping followed by haplotype analysis, we mapped the mutation using 14 FIS–affected, 17 obligate carriers, and 10 adults of unknown carrier status to a ∼1 Mb region (29.8 – 30.8 Mb) on chromosome (ECA) 26. A subsequent genome-wide association study identified two SNPs on ECA26 that showed genome-wide significance after Bonferroni correction for multiple testing: BIEC2-692674 at 29.804 Mb and BIEC2-693138 at 32.19 Mb. The associated region spanned 2.6 Mb from ∼29.6 Mb to 32.2 Mb on ECA26. Re-sequencing of this region identified a mutation in the sodium/myo-inositol cotransporter gene (SLC5A3); this causes a P446L substitution in the protein. This gene plays a crucial role in the regulatory response to osmotic stress that is essential in many tissues including lymphoid tissues and during early embryonic development. We propose that the amino acid substitution we identify here alters the function of SLC5A3, leading to erythropoiesis failure and compromise of the immune system. FIS is of significant biological interest as it is unique and is caused by a gene not previously associated with a mammalian disease. Having identified the associated gene, we are now able to eradicate FIS from equine populations by informed selective breeding

    The IMPROVE guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments)

    Get PDF
    Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information)

    Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Get PDF
    Background: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods: In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results: Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion: Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice

    Exclusion of NFAT5 from Mitotic Chromatin Resets Its Nucleo-Cytoplasmic Distribution in Interphase

    Get PDF
    The transcription factor NFAT5 is a major inducer of osmoprotective genes and is required to maintain the proliferative capacity of cells exposed to hypertonic stress. In response to hypertonicity, NFAT5 translocates to the nucleus, binds to regulatory regions of osmoprotective genes and activates their transcription. Besides stimulus-specific regulatory mechanisms, the activity of transcription factors in cycling cells is also regulated by the passage through mitosis, when most transcriptional processes are downregulated. It was not known whether mitosis could be a point of control for NFAT5.Using confocal microscopy we observed that NFAT5 was excluded from chromatin during mitosis in both isotonic and hypertonic conditions. Analysis of NFAT5 deletions showed that exclusion was mediated by the carboxy-terminal domain (CTD). NFAT5 mutants lacking this domain showed constitutive binding to mitotic chromatin independent of tonicity, which caused them to localize in the nucleus and remain bound to chromatin in the subsequent interphase without hypertonic stimulation. We analyzed the contribution of the CTD, DNA binding, and nuclear import and export signals to the subcellular localization of this factor. Our results indicated that cytoplasmic localization of NFAT5 in isotonic conditions required both the exclusion from mitotic DNA and active nuclear export in interphase. Finally, we identified several regions within the CTD of NFAT5, some of them overlapping with transactivation domains, which were separately capable of causing its exclusion from mitotic chromatin.Our results reveal a multipart mechanism regulating the subcellular localization of NFAT5. The transactivating module of NFAT5 switches its function from an stimulus-specific activator of transcription in interphase to an stimulus-independent repressor of binding to DNA in mitosis. This mechanism, together with export signals acting in interphase, resets the cytoplasmic localization of NFAT5 and prevents its nuclear accumulation and association with DNA in the absence of hypertonic stress

    Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factor NFAT5/TonEBP regulates the response of mammalian cells to hypertonicity. However, little is known about the physiopathologic tonicity thresholds that trigger its transcriptional activity in primary cells. Wilkins et al. recently developed a transgenic mouse carrying a luciferase reporter (9xNFAT-Luc) driven by a cluster of NFAT sites, that was activated by calcineurin-dependent NFATc proteins. Since the NFAT site of this reporter was very similar to an optimal NFAT5 site, we tested whether this reporter could detect the activation of NFAT5 in transgenic cells.</p> <p>Results</p> <p>The 9xNFAT-Luc reporter was activated by hypertonicity in an NFAT5-dependent manner in different types of non-transformed transgenic cells: lymphocytes, macrophages and fibroblasts. Activation of this reporter by the phorbol ester PMA plus ionomycin was independent of NFAT5 and mediated by NFATc proteins. Transcriptional activation of NFAT5 in T lymphocytes was detected at hypertonic conditions of 360–380 mOsm/kg (isotonic conditions being 300 mOsm/kg) and strongly induced at 400 mOsm/kg. Such levels have been recorded in plasma in patients with osmoregulatory disorders and in mice deficient in aquaporins and vasopressin receptor. The hypertonicity threshold required to activate NFAT5 was higher in bone marrow-derived macrophages (430 mOsm/kg) and embryonic fibroblasts (480 mOsm/kg). Activation of the 9xNFAT-Luc reporter by hypertonicity in lymphocytes was insensitive to the ERK inhibitor PD98059, partially inhibited by the PI3-kinase inhibitor wortmannin (0.5 μM) and the PKA inhibitor H89, and substantially downregulated by p38 inhibitors (SB203580 and SB202190) and by inhibition of PI3-kinase-related kinases with 25 μM LY294002. Sensitivity of the reporter to FK506 varied among cell types and was greater in primary T cells than in fibroblasts and macrophages.</p> <p>Conclusion</p> <p>Our results indicate that NFAT5 is a sensitive responder to pathologic increases in extracellular tonicity in T lymphocytes. Activation of NFAT5 by hypertonicity in lymphocytes was mediated by a combination of signaling pathways that differed from those required in other cell types. We propose that the 9xNFAT-Luc transgenic mouse model might be useful to study the physiopathological regulation of both NFAT5 and NFATc factors in primary cells.</p

    The Transcription Factor NFAT5 Is Required for Cyclin Expression and Cell Cycle Progression in Cells Exposed to Hypertonic Stress

    Get PDF
    Background: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. Methodology/Principal Findings: We have generated conditional knockout mice to obtain NFAT5−/− T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5−/− cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5−/− cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5−/− lymphocytes. Conclusions/Significance: We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.Molecular and Cellular Biolog
    corecore